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ble sigmoidoscopy, or colonoscopy. Colonoscopic polypecto-

my is an effective screening and prevention modality for de-

tecting and treating precancerous and early cancerous lesions 

to decrease CRC incidence and mortality rates.3

Rapid advances in our understanding of the molecular and 

biological characteristics of CRC have provided useful knowl-

edge about its pathogenesis.1,2 It has become possible to the 

develop biomarkers that help with the identification of patient 

responses with respect to cancer diagnosis, management, and 

surveillance.4,5 The identification of biomarkers that can aid 

CRC early detection or monitoring would enable the develop-

ment of personalized medicine and improve survival rates. 

An ideal CRC biomarker should be easily and quantitatively 

measured, highly specific and sensitive, reliable, and repro-

ducible. It should also be able to differentiate between differ-
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Colorectal cancer (CRC) is among the most common malignancies and remains a major cause of cancer-related death world-
wide. Despite recent advances in surgical and multimodal therapies, the overall survival of advanced CRC patients remains 
very low. Cancer progression, including invasion and metastasis, is a major cause of death among CRC patients. The underlying 
mechanisms of action resulting in cancer progression are beginning to unravel. The reported molecular and biochemical mech-
anisms that might contribute to the phenotypic changes in favor of carcinogenesis include apoptosis inhibition, enhanced tu-
mor cell proliferation, increased invasiveness, cell adhesion perturbations, angiogenesis promotion, and immune surveillance 
inhibition. These events may contribute to the development and progression of cancer. A biomarker is a molecule that can be 
detected in tissue, blood, or stool samples to allow the identification of pathological conditions such as cancer. Thus, it would 
be beneficial to identify reliable and practical molecular biomarkers that aid in the diagnostic and therapeutic processes of 
CRC. Recent research has targeted the development of biomarkers that aid in the early diagnosis and prognostic stratification 
of CRC. Despite that, the identification of diagnostic, prognostic, and/or predictive biomarkers remains challenging, and previ-
ously identified biomarkers might be insufficient to be clinically applicable or offer high patient acceptability. Here, we discuss 
recent advances in the development of molecular biomarkers for their potential usefulness in early and less-invasive diagnosis, 
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INTRODUCTION

Colorectal cancer (CRC) is a leading cause of cancer-associat-

ed morbidity and mortality worldwide.1 Despite evidence of a 

5-year survival rate of 90% when CRC is diagnosed at an early 

stage, less than 40% of cases are diagnosed when the cancer is 

still localized.1 Most CRC cases develop from precursor lesions 

defined as adenomatous polyps.2 Currently available screen-

ing programs for CRC are administered using guaiac-based 

fecal occult blood tests, fecal immunohistochemical test, flexi-
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ent risk-based populations and select patients who require a 

second-line test (endoscopic and radiologic investigations). 

Ideally, these aims can be achieved with a noninvasive and in-

expensive method using easily available biological samples 

such as urine, breath, serum, or feces.6-9 Despite advances made 

in recent years, no single test is currently able to diagnose and 

monitor the posttreatment course of CRC patients. Here, we 

review the current status of newer diagnostic, prognostic, and 

predictive biomarkers in CRC and provide insights for their 

implementation in clinical management.

Table 1. Summary of Diagnostic Biomarkers

Biomarker Explanation

Tissue biomarker

   Cytokeratins (CKs) 65%–95% of CRC cases show a CK7–/CK20+ pattern.10

   Caudal type homeobox  
   2 (CDX2)

Sensitivity and specificity of CDX2 expression in CRC diagnosing is greater than 90%. As CDX2 expression alone cannot 
differentiate among adenocarcinomas of the GI tract,13,14 it is useful as an adjunct to CKs.

   Special AT-rich sequence 
   binding protein2 (SATB2)

The addition of SATB2 to standard panels showed no significant improvement in sensitivity or specificity in the diagnosis 
of CRC.18 As SATB2 expression was positive in 95% of metastatic CRC and 0% of ovarian carcinoma cases, it could be 
useful as a marker to exclude ovarian carcinomas.19,20

   Cadherin 17 (CDH17) Cadherins are cell–cell adhesion molecules that play important roles in maintaining tissue structure under normal 
conditions.21 CDH17 is reportedly expressed in 96%–100% of primary and 100% of metastatic CRC.25-27 

   Telomerase Telomerase is a ribonucleoprotein that maintains telomeres by adding TTAGGG repeats onto them.29 Cancer cells bypass 
DNA damage-induced inhibitory signaling pathways by upregulating telomerase. Using TBT, telomerase showed 95% 
sensitivity and 95% specificity in CRC.32

   GPA33 (A33) A33 is expressed in the stomach, small intestine, colon, and rectal epithelial cells. It is expressed in more than 95% of 
human CRC.35 Also, an immunohistological study comparing A33 and CDX2 revealed that A33 showed similar sensitivity 
as but a higher specificity than CDX2 as an immunomarker of CRC.36

Blood biomarker

   Circulating cell-free  
   DNA (cfDNA)

The cfDNA is released as much larger fragments in tumor cells than in normal cells.41 Quantitative analysis of circulating 
cfDNAs by measuring the ratio of longer and shorter DNA fragments, in other words, measuring cfDNA integrity 
number during the diagnosis of CRC, showed sensitivity of 73%–90% and specificity of 97%–85%.42,43

   MicroRNA (miRNA) The miRNAs are 18–25 bp-long small noncoding RNAs that regulate gene expression by binding to mRNA.47 Compared 
to mRNA, miRNAs show higher stability in the blood. Different combinations of miRNA showed high sensitivity and 
specificity for detecting CRC.52,53

   Long noncoding  
   RNA (lncRNA)

HIF1A-AS1 showed high diagnostic ability of CRC with an AUC of 0.960. CRC patients with high HIF1A-AS1 expressions 
were associated with shorter 5-year survival rate than those with low HIF1A-AS1 expression.56 

CRNDE-h showed better diagnostic value compared to CEA. When combined with CEA, he diagnostic value improved.57

Other markers such as NEAT1, ZFAS1, and GAS5 showed promising results for potential use as a diagnostic or prognostic 
marker.

   Insulin-like growth  
   factor binding protein  
   2 (IGFBP-2)

An elevated serum IGFBP-2 level is associated with malignancies of the colon, ovary, and prostate as well as other 
advanced solid tumors.62-65 Although the sensitivity and specificity of IGFBP-2 alone is unsatisfactory for early CRC and 
colon polyp detection, the combination of IGFBP-2 and CEA could increase its sensitivity.61,66

Stool biomarker

   Guaiac fecal occult blood  
   test (gFOBT)

Use of the gFOBT as a CRC screening test reduced mortality by 11%–33% over 20 years of follow-up.67-69 However, it 
cannot distinguish upper GI bleeding from lower GI bleeding or human heme from non-human heme.70

   Fecal immunochemical  
   test (FIT)

The FIT detects human globin using a human hemoglobin–specific immunoassay.72 It has higher sensitivity and specificity 
than gFOBT for detecting CRC and advanced adenomas.73

   Stool DNA (sDNA) The Cologuard test (multi-target stood DNA test for CRC) showed higher sensitivity than gFOBT and FIT but also a higher 
false positive rate.86,87

   Stool miRNA miR-92a, miR-21, miR144, miR-106a, miR17-92 cluster, miR135 were up-regulated in CRC, while miR-143 and miR-
145 were down-regulated in CRC.92-94 However, none of the miRNAs showed adequate predictive value for use as a 
standalone CRC diagnostic test.

CRC, colorectal cancer; TBT, Telomerase Biosensor Technology; HIF1A-AS1, hypoxia-inducible factor 1alpha-antisense RNA 1; AUC, area under the curve;  
CRNDE-h, colorectal neoplasia differentially expressed-h.
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DIAGNOSTIC BIOMARKERS (Table 1)

1. Tissue Biomarkers 
1) Cytokeratins

Cytokeratins (CKs) are keratin proteins found in the intracyto-

plasmic cytoskeleton of epithelial tissue. To differentiate meta-

static CRC from other tumors, tissues can be stained for CK7 

and CK20. CRC specimens usually stain positive for CK20 and 

negative for CK7.10 CK20 is selectively present in the normal 

gland cells of the colonic mucosa and Merkel cells. In contrast, 

CK7 is not detected in the colonic mucosa. CK7 is expressed 

in bladder and female genital tract epithelia, mesothelium, 

and normal lung.11 CK staining patterns are among the most 

helpful procedures for identifying metastatic adenocarcinoma 

of unknown primary origin. Detecting the CK7–/CK20+ pat-

tern is a typical method for metastatic CRC diagnosis.12 A re-

ported 65% to 95% of CRC cases show a CK7–/CK20+ pattern.10

2) Caudal type homeobox 2

Caudal type homeobox 2 (CDX2) codes for a homeobox pro-

tein that is critically involved in the regulation of normal cell 

differentiation in the GI tract and tumor suppression in the 

colon. Werling et al.13 revealed that the loss of CDX2 expres-

sion might result in CRC. They also found that immunohisto-

chemical detection of CDX2 protein expression could be used 

to identify CRC from other adenocarcinomas of the GI tract. 

According to the study findings, high CDX2 expression levels 

were found in CRC, while intermediate CDX2 expression lev-

els were found in other adenocarcinomas of the GI tract. Oth-

er than CK pattern, assessing CDX2 expression is also a very 

sensitive and specific manner of identifying CRC. Many stud-

ies have evaluated CDX2 expression in CRC, and its sensitivity 

and specificity are reportedly greater than 90%.13,14 However, 

many studies found that CDX2 is also expressed in other ade-

nocarcinomas of the GI tract such as adenocarcinoma of the 

stomach (33%–70%). CDX2 expression alone cannot differen-

tiate among adenocarcinomas of the GI tract.13,14 Therefore, it 

is very useful when used as an adjunct to CK staining, espe-

cially in patients with a CK7+/CK20+ or CK7–/CK20– profile.

3) Special AT-rich sequence binding protein 2

Special AT-rich sequence binding protein 2 (SATB2) is part of 

the matrix attachment region-binding transcription factors 

family.15 Although the exact role of SATB2 in the GI tract is un-

known, Magnusson et al.16 found that SATB2 is highly expressed 

in the epithelium of the lower GI tract including the appendix, 

colon, and rectum. The authors checked the expression profile 

of SATB2 in 216 cancer samples and found that the majority 

of CRC samples, including that of poorly differentiated CRC, 

showed strong SATB2 expression. SATB2 used as a single mark-

er showed positivity in 87.8% (943/1,074) of CRC cases.16,17 Oth-

er carcinomas from the ovary and lung rarely stained positive 

for SATB2 expression ( < 7%).17 Many studies have evaluated 

the benefit of the addition of SATB2 to the standard panels of 

CK7, CK20, and CDX2. Dragomir et al.18 reported that the ad-

dition of SATB2 to standard panels showed no significant im-

provement in sensitivity or specificity in the diagnosis of CRC. 

In contrast, 2 recent studies reported that SATB2 could be a 

specific marker for differentiating metastatic CRC from pri-

mary ovarian carcinomas. Before the identification of SATB2, 

CDX2 was the most specific marker available. However, CDX2 

tested positive in 18% of ovarian carcinomas, whereas SATB2 

was expressed in 95% of metastatic CRC and 0% of ovarian 

carcinomas.19,20 Therefore, SATB2 could be used as a marker 

to exclude ovarian carcinomas.

4) Cadherin 17

Cadherins are cell–cell adhesion molecules that play impor-

tant roles in maintaining tissue structure under normal condi-

tions.21 Molecular defects in cadherin expression are associat-

ed with many human diseases, including carcinomas.22 Cad-

herin 17 (CDH17), a member of the cadherin superfamily, 

was first identified in the rat liver and intestine.23 Later on, 3 

immunohistochemical studies consisting of a large number of 

human tissues found that CDH17 was expressed on the sur-

face epithelium of the duodenum, ileum, appendix, and co-

lon.24-26 Many recent studies have indicated that CDH17 could 

be a good immunohistochemical marker for the diagnosis of 

adenocarcinomas of the GI tract. CDH17 is reportedly expressed 

in 96% to 100% of primary and 100% of metastatic CRC.25-27 

CDH17 is also expressed in other GI tumors such as gastric, 

pancreatic, and biliary cancer but it is rarely found outside the 

GI tract.28 Although CDH17 is transcriptionally regulated by 

CDX2, some studies indicated that CDH17 is more sensitive 

and specific than CDX2 for the identification of CRC.27,28

5) Telomerase

Telomerase is a ribonucleoprotein that maintains telomeres 

by adding TTAGGG repeats onto telomeres that are located at 

the ends of chromosomes. Telomerase uses intrinsic RNA as a 

template for reverse transcription.29 In normal cells, telomeres 

shorten with each cell division. When telomeres become criti-
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cally shortened, a signal of DNA damage is induced that re-

sults in replicative senescence.30 Cancer cells bypass DNA dam-

age-induced inhibitory signaling pathways by upregulating 

telomerase. Telomerase is found in 85% to 90% of all malig-

nant tumors.31 Using the novel assay Telomerase Biosensor 

Technology (TBT; Sienna Cancer Diagnostics, Melbourne, 

Australia), telomerase has become a new diagnostic biomark-

er in CRC. According to the study, it is predicted to show 95% 

specificity and 95% sensitivity in melanoma, bladder cancer, 

and CRC.32

6) GPA33

The GPA33 (A33) gene codes for membranous protein A33, a 

membrane-bound glycoprotein with a homolog in the immu-

noglobulin superfamily.33 Although the function of A33 is not 

yet understood, it might be associated with immunological 

processes, proliferation, and colonic mucosal repair as report-

ed by an animal study.34 Immunohistochemical studies have 

found that A33 is expressed by epithelial cells in the stomach, 

small intestine, colon, and rectum. It is expressed in more than 

95% of human CRC cases, especially in well-differentiated tu-

mors, indicating that it could be a potential target for CRC treat-

ment.35 An immunohistological study comparing A33 and 

CDX2 revealed that A33 showed sensitivity similar to that of 

CDX2 but specificity higher than that of CDX2 as an immuno-

marker of CRC.36

2. Blood Biomarkers
1) Chromosomal instability

Chromosomal instability (CIN) is defined as gain or loss of 

whole or large portions of chromosomes leading to karyotypic 

variability, resulting in sub-chromosomal genomic amplifica-

tions, changes in chromosome numbers, and a high loss of 

heterozygosity (LOH) rate. CIN is the most common form of 

genetic instability observed in CRC (65%–70%).37 Mutations 

in tumor suppressor genes (TSGs) and oncogenes such as 

APC, CTNNB1, KRAS, PIK3CA, and TP53, and LOH of chro-

mosome 18q were the key events that lead to the development 

of CIN CRC.38-40

2) Circulating cell-free DNA

Circulating cell-free DNA (cfDNA) is a type of cell-free nucleic 

acid derived from normal and tumor cells that enters into the 

bloodstream by apoptosis or necrosis.41 The lengths of cfDNA 

strands differ among processes by which they are made. In 

healthy individuals, cfDNA is released from apoptotic cells, 

and the DNA fragments are about 180 bp long. However, in tu-

mor cells, cfDNA is released as much larger fragments by ne-

crosis.41 Therefore, the quantitative analysis of circulating cfD-

NAs by measuring the ratio of longer and shorter DNA frag-

ments, in other words, measuring cfDNA integrity number 

during the diagnosis of CRC, showed some promising results. 

Hao et al.42 reported that cfDNA integrity number measured 

by qualitative PCR method showed a sensitivity of 73.08% and 

specificity of 97.27%. Later, El-Gayar et al.43 reported that cfD-

NA integrity number measured by RT-PCR reaction showed 

sensitivity of 90% and specificity of 85%. The concentrations of 

cfDNA differed between healthy and CRC patients. CRC pa-

tients showed a five times higher concentration of serum cfD-

NA and 25 to 50 times higher concentrations of plasma cfDNA 

than healthy controls.43-45 Wang et al.46 performed a systematic 

review and meta-analysis of circulating cfDNA as a diagnostic 

marker for CRC. Fourteen studies were analyzed which in-

cluded 1,258 CRC patients and 803 healthy controls. Quanti-

tative analysis of circulating cfDNA for the diagnosis of CRC 

showed 73.5% sensitivity and 91.8% specificity, suggesting 

that it had acceptable specificity for the diagnosis of CRC. The 

integrity index showed better diagnostic accuracy for CRC 

than did absolute DNA concentration.

3) MicroRNA

MicroRNAs (miRNAs) are 18–25 bp-long small noncoding 

RNAs that regulate gene expression by binding to mRNA. The 

miRNAs are reportedly associated with many cancers including 

CRC by acting as oncogenes or TSGs.47 Compared to mRNA, miR-

NAs show higher stability in the blood since they avoid degrada-

tion by endogenous RNase and are resistant to extreme pH 

changes. For these reasons, miRNA are promising noninvasive 

biomarkers in cancer.48 Studies have assessed their diagnostic 

ability for CRC in single or panels of miRNA. 

Many studies reported that miR-21 could be a promising di-

agnostic marker for CRC. One study reported that miR-21 

showed 90% specificity and sensitivity for CRC detection.49,50 

Another study reported that the combination of miR-141 and 

CEA improved CRC detection accuracy. High levels of miR-

141 were associated with poor survival, indicating that it may 

be used as a prognostic marker.51

Other studies assessing different combinations of miRNAs 

showed better results. A panel of mi-24, mi-320a, and mi-423-

5q showed 92.8% sensitivity and 70.8% specificity for detect-

ing CRC.52 Another study reported that a panel of 6 serum 

miRNA (miR-21, let-7g, miR-31, miR-92a, miR-181b, and miR-
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203) showed 93% sensitivity and 91% specificity for detecting 

CRC, comparable to those of conventional tumor markers 

CEA and CA19-9.53

4) Long noncoding RNAs

Long noncoding RNAs (lncRNAs), which consist of more than 

200 nucleotides that cannot translate to protein, are implicat-

ed in various biological processes such as epigenetic regula-

tion, immune responses, differentiation, and chromosome dy-

namics.54 At this point, more than 150 human disease are re-

portedly associated with lncRNAs, such as colon cancer, breast 

cancer, leukemia, and psoriasis.55 Studies have assessed their 

diagnostic ability for CRC using single or panel lncRNAs.

Serum hypoxia-inducible factor (HIF) 1alpha-antisense 

RNA 1 (HIF1A-AS1) was significantly elevated in 151 CRC pa-

tients versus that in 160 healthy controls and showed a high 

diagnostic ability for CRC with an area under the curve (AUC) 

of 0.960 (95% CI, 0.940–0.980; P < 0.001). CRC patients with 

high HIF1A-AS1 expression were associated with a shorter 

5-year survival rate than those with low expression, indicating 

that HIF1A-AS1 could be used as a CRC diagnostic and prog-

nostic biomarker.56

Colorectal neoplasia differentially expressed-h (CRNDE-h), 

a splice variant of CRNDE, was shown to distinguish CRC pa-

tients from healthy individuals. Serum CRNDE-h levels were 

significantly elevated in CRC patients compared to those in 

patients with benign disease or healthy controls. Compared to 

conventional tumor marker CEA, the diagnostic value of CR

NDE-h was better that the AUC value for distinguishing CRC 

patients from healthy controls was 0.892 and 0.688, respec-

tively. AUC value improved to 0.913 when CRNDE-h levels 

were combined with CEA. Also, the elevated CRNDE-h level 

was significantly associated with lymph node involvement 

and distant metastases, and patients with an elevated CRNDE-

h level had poor overall survival (OS) rates.57

Other lncRNAs such as NEAT1,58 ZNFX1 antisense RNA1 

(ZFAS1),59 and GAS560 showed some promising results of their 

potential use as CRC diagnostic or prognostic biomarkers.

5) Insulin-like growth factor binding protein 2

Insulin-like growth factor binding protein 2 (IGFBP-2) is a bind-

ing protein that modulates the interaction between insulin-like 

growth factor (IGF) ligands and IGF-1 receptors.61 Although the 

physiological role of IGFBP-2 is not clearly understood, several 

studies have reported that serum IGFBP-2 level elevations are 

associated with malignancies of the colon, ovary, and prostate 

as well as other advanced solid tumors.62-65 Liou et al.66 report-

ed that elevated serum and plasma IGFBP-2 levels could dis-

tinguish patients with CRC or colon polyps from healthy con-

trols. Although the sensitivity and specificity of IGFBP-2 alone 

is unsatisfactory for early CRC and colon polyp detection, its 

combination of IGFBP-2 with other biomarkers such as CEA 

could increase the sensitivity. Also, higher plasma IGFBP-2 

levels were associated with larger tumor size and worse OS 

rates, indicating that IGFBP-2 might serve as a diagnostic and 

prognostic biomarker for CRC.61 

3. Stool Biomarkers
1) Fecal occult blood and immunochemical test

The guaiac fecal occult blood test (gFOBT) and fecal immuno-

chemical test (FIT) are widely used non-invasive techniques 

for screening for CRC. According to randomized control clini-

cal trials, gFOBT as a CRC screening test reduced mortality by 

11%–33% over 20 years of follow-up.67-69 However, its use as a 

biomarker has many limitations: It cannot distinguish bleed-

ing between the upper and lower GI tract; cannot distinguish 

human heme from non-human heme; and is easily affected 

by drugs or diet.70 Therefore, it shows only 30% to 40% sensitiv-

ity for detecting cancerous and precancerous lesions.71 These 

limitations of gFOBT have led to the development of FIT, which 

detects human globin using a human hemoglobin–specific 

immunoassay. It can detect both the presence and the quanti-

ty of fecal hemoglobin. Therefore, the cutoff level for this test 

can be selected, which might be advantageous.72 Compared to 

gFOBT, FIT has many advantages: it has higher sensitivity and 

specificity for CRC and advanced adenomas (AAs);73 it requires 

only 1 stool sample (vs. 3); it is more cost-effective; and it pro-

vides more quality-adjusted life years than gFOBT.74 However, 

the FIT also has limitations. In detecting adenomas > 1 cm in 

diameter, FIT showed only 20% to 30% sensitivity.75 Moreover, 

the occult blood test can detect left-sided lesions in the colon 

much more than right-sided lesions.75,76 This is an important 

limitation since the incidence of right-sided CRC has been in-

creasing over the past 2 decades.77 Therefore, neither gFOBT 

nor FIT can stand alone as a diagnostic tool.

2) Other stool-based tests

Stool-based assays are considered the most successful type 

for many reasons. According to direct histological observations, 

CRC and polyps exfoliate many neoplastic cells and their de-

bris into the mucocellular layer of the colonic lumen.72 The de-

tectable molecular changes that are caused by CRC cells are 
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reportedly present in the stool earlier than in the blood.78 The 

actual unfolded surface area of the epithelial monolayer of 

cancers and polyps could be 200 times larger than that pre-

dicted by gross findings.79 However, despite abundant cellular 

exfoliation from large surface areas and neoplastic cells in the 

mucocellular areas, exfoliated colonocytes rarely survive if they 

are shed in the right colon due to intra-luminal lysis.80 Hence, 

after cell lysis, the detection of components of the exfoliated 

cells, such as DNA, miRNA, and proteins, could be useful.

3) Stool DNA

Less than 0.01% of the total DNA in the stool is human DNA, 

while the other 99.99% is derived from intestinal bacteria or 

the diet. Therefore, detecting methylated or mutated human 

DNA in the stool is an important technique for diagnosing 

CRC.81 Several panels of methylated genes within stool DNA 

(sDNA), such as APC, ATM, BMP3, CDH1, CDKN2A, CDH13, 

CRBP1, CXCL21, ESR1, GATA4, GSTP1, HLTF, ID4, IRF8, ITGA4, 

KRAS, MINT1, MINT31, MLH1, MGMT, NDRG4, RASSF2A, 

SFRP2, TFPI2, VIM, and WIF1, have been analyzed for the di-

agnosis of CRC.82-85 To date, the United States Food and Drug 

Administration has approved only the Cologuard test (multi-

target stool DNA test for CRC) for CRC screening. Compared 

to the gFOBT, the Cologuard test shows better sensitivity (13% 

vs. 52%) for detecting CRC. However, no improvement was 

seen in detecting large ( > 1 cm) adenomas (10.3% vs. 10.7%).86 

Similar results were observed when the sDNA test was com-

pared to the FIT: the former showed higher sensitivity but a 

higher false positive rate as well.87 To improve the early detec-

tion rate of CRC and AAs, some studies have combined the 

sDNA test and FIT. The majority of studies reported that the 

sensitivity for detecting CRC and AAs was higher with the sDNA 

test plus the FIT compared to the FIT alone. However, since 

the false positivity rate was higher, the demand for colonosco-

py was more than twice that of the sDNA test plus FIT com-

pared to the FIT alone. Also, the specificity for detecting CRC 

was lower for the sDNA test plus the FIT compared to the FIT 

alone.88-90

4) Stool miRNA

Since the environment of the GI tract is much more compli-

cated than that of the blood, marker stability within it is a ma-

jor concern. Many studies have shown that, unlike rapid deg-

radation of mRNA and protein, miRNA transcripts were more 

stable in various conditions.47,91 Although there are limited 

data about miRNA in the stool compared to that in the blood, 

dysregulation of miRNA expression was found in the stool of 

CRC patients; miR-92a, miR-21, miR144, miR-106a, miR17-92 

cluster, and miR135 were up-regulated in CRC; and miR-143 

and miR-145 were down-regulated in CRC.92-94 However, none 

of the miRNAs showed adequate predictive value for use as a 

CRC diagnostic test alone, and future studies are needed to 

improve the diagnostic value of miRNA by combining several 

miRNAs.92

PROGNOSTIC BIOMARKERS (Table 2)

1. Tissue Biomarkers
1) BRAF

The mitogen-activated protein kinase pathway, which consists 

of RAS-RAF-MEK-ERK, is associated with cell differentiation, 

migration, angiogenesis, and proliferation. The dysregulation 

of this pathway leads to carcinogenesis.95 Approximately 8% of 

advanced CRC and 14% of localized stage II and III CRC cases 

have BRAF-activating mutations.96,97 According to the meta-

analysis of Li and Li,98 the BRAF mutation was significantly as-

sociated with a tumor location in the proximal colon, poor dif-

ferentiation, tumor size, and female sex. Advanced CRC pa-

tients with the BRAF mutation showed poorer progression-

free survival (PFS) and OS rates and lower response rates to 

anti-epidermal growth factor receptor (EGFR) therapy than 

those without BRAF mutations. Patients with localized stage II 

and III CRC with BRAF mutations also showed poorer OS 

rates.99,100 Supported by these results, in 2017, the American 

Society of Clinical Oncology (ASCO) published the guideline 

for the use of molecular biomarkers for CRC. BRAF p.V600 ac-

counts for more than 90% of BRAF mutations, and is recom-

mended to be analyzed for its prognostic value.101

2) Microsatellite instability

Microsatellites are repeating DNA sequences of 1–6 bp that 

can be found in coding and noncoding regions. The mismatch 

repair (MMR) system fixes DNA errors that occur during rep-

lication. Microsatellite instability (MSI) results from inactiva-

tion of the MMR genes through sporadic MLH1 promoter hy-

permethylation (80% of MSI CRC cases) or germline muta-

tions in MMR genes such as MLH1, MSH2, MSH6, or PMS2 

(20% of MSI CRC cases).102,103 The presence of deficient MMR 

leads to the accumulation of somatic mutations and induces 

genomic instability, causing cancer-associated alterations.104 

Lynch syndrome, also called hereditary non-polyposis colon 

cancer, is caused by germline mutations in MMR genes that 
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lead to MSI.105 MSI is also associated with sporadic CRC. In 

sporadic MSI CRC, hypermethylation of the MLH1 promoter 

region causes MLH1 silencing.106 MMR status testing is recom-

mended for patients with CRC for prognostic stratification.107 

There are 5 commonly used microsatellite markers, including 

2 mononucleotide repeats (BAT26 and BAT25) and 3 dinucle-

otide repeats (D2S123, D5S346, and D17S250). If a marker 

shows greater than 30%–40% instability, it is identified as MSI-

high.108 MSI-high tumors are more likely to be poorly differen-

tiated, contain mucin, and possess subepithelial lymphoid ag-

gregates and intraepithelial lymphocytes. Although the cause 

is unknown, MSI-high tumors have better prognosis than MSI-

low tumors, possibly due to these immune responses.108,109 Gua

stadisegni et al.110 reviewed 13 studies to evaluate the prognos-

tic value of MSI in CRC patients and reported that MSI CRC 

patients showed longer OS and disease-free survival (DFS) 

than microsatellite stable CRC patients. 

3) Cytosine preceding guanine island methylator phenotype

Cytosine preceding guanine (CpG) islands are regions that 

are common in promoter sites rich in CpG dinucleotides. Ab-

normal DNA methylation has been observed in almost all CRCs. 

CpG island methylator phenotype (CIMP) CRC (10%–20%) 

have extremely high proportions of aberrantly methylated CpG 

loci.111 Hypermethylation in CpG islands silences genetic ac-

tivity and result in dysregulated gene expression.112 CIMP is 

often defined as hypermethylation of at least 3 loci in a select-

ed panel of 5 genes (hMLH1, p16, MINT1, MINT3, and MINT31) 

that are associated with CpG islands.113 Since CIMP was a re-

cently identified phenotype, methylated loci that are used to 

define CIMP have not yet been established.114,115 This might be 

the reason why the prognostic role of CIMP remains unclear. 

However, the majority of studies reported that CIMP+/CIMP-

high CRC patients showed poorer prognosis than CIMP–/CIMP-

high CRC patients.116

4) APC

APC gene mutation is associated with familial adenomatous 

polyposis and most sporadic CRC cases.109 APC has an impor-

tant role in Wnt signaling, which is associated with cytoskele-

tal integrity, cellular proliferation, motility, and apoptosis by 

β-catenin regulation. APC mutation can increase β-catenin 

Table 2. Summary of Prognostic Biomarkers

Biomarker Explanation

Tissue biomarker

   BRAF Comprises the mitogen-activated protein kinase pathway, which is associated with cell differentiation, migration, angiogenesis, 
and proliferation.95 BRAF mutation is associated with poorer PFS and OS.99,100 The analysis of its prognostic role is recommended.101

   MSI MSI-high tumors have better prognosis than MSI-low tumors.97,98 MSI CRC patients showed longer OS and DFS than MSS CRC 
patients.110

   CIMP The prognostic role of CIMP is unclear. However, the majority of studies reported that CIMP+/CIMP-high CRC patients showed 
poorer prognosis than CIMP–/CIMP-high CRC patients.116

   APC APC is associated with FAP and most cases of sporadic CRC.109 APC mutation can cause unregulated transcription of many 
oncogenes.117 Patients with APC mutation and high miR-21 reportedly had shorter OS.118

   p53 Some studies reported its association with lower DFS,103 RFS,121 and OS122 rates, but others reported no evidence of a prognostic 
role.106,107

   SMAD4 SMAD4 mediates the TGF-β superfamily signaling pathway, which is frequently altered in human cancers.125 Loss of SMAD4 was 
associated with poor DFS and OS.129

Blood biomarker

   CEA CEA level is reportedly significantly associated with patient outcomes.134 Preoperative CEA level was significantly associated with 
prognosis in patients with CRC metastasized to the liver.135,136

   NLR Patients with elevated NLR were significantly associated with shorter OS and shorter PFS after treatment.142 CRC patients with a 
pretreatment NLR <5 were more likely to have 5-year OS and DFS.143 Also, elevated pretreatment NLR was significantly related 
with poor OS and RFS in patients with liver metastasis.144

   cfDNA CRC patients with higher cfDNA concentrations showed a higher risk of recurrence and shorter OS.44,128 Detectable APC, KRAS, and 
p53 mutations in the serum were significantly associated with a higher rate of postoperative metastasis/recurrence.146

PFS, progression-free survival; OS, overall survival; MSI, microsatellite instability; CRC, colorectal cancer; DFS, disease-free survival; MSS, microsatellite 
stable; CIMP, cytosine preceding guanine island methylator phenotype; FAP, familial adenomatous polyposis; RFS, relapse-free survival; TGF-β, 
transforming growth factor-β; NLR, neutrophil-to-lymphocyte ratio.
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levels, leading to increased c-myc expression, which is associ-

ated with cell proliferation. Therefore, APC mutation can cause 

the unregulated transcription of many oncogenes.117 It was re-

cently reported that in advanced-stage CRC, patients with APC 

mutation and high miR-21 had shorter OS, indicating that APC 

mutation could be a measure to predict the clinical outcomes 

of CRC.118

5) p53

CRC (50%–70%) have mutations in the TSG p53.119 When DNA 

is damaged, p53 causes cell cycle arrest to repair the mutations; 

if the mutations cannot be repaired, apoptosis is induced.109 

Many studies have examined p53 mutations and their prog-

nostic value in CRC patients. However, the results are contra-

dictory. Some studies reported that p53 mutation/overexpres-

sion is associated with lower DFS,120 relapse-free survival (RFS),121 

and OS122 rates. Other studies reported that there is no evidence 

that p53 status has prognostic value.123,124

6) SMAD4

Mutations in the TSG SMAD4, located on chromosome 18q21, 

leads to the loss of SMAD4 protein expression. SMAD4 medi-

ates the transforming growth factor-β superfamily signaling 

pathway, which is frequently altered in human cancers.125 It is 

associated with cell proliferation, differentiation, apoptosis, and 

cell migration.126 A reported 30% to 40% of CRC cases show 

SMAD4 mutations.127,128 Voorneveld et al.129 performed a me-

ta-analysis to clarify the prognostic value of SMAD4 in CRC 

patients. According to the study findings, loss of SMAD4 was 

associated with poor DFS and OS. 

2. Blood Biomarkers
1) CEA levels

CEA is the only marker that has been recommended by the 

ASCO 2006 update of recommendations for the management 

of CRC patients. CEA testing every 3 months post-surgery is 

recommended for patients with stage II or III CRC.130 Renehan 

et al.131 reviewed 5 trials of patient follow-up after curative re-

section of CRC. The authors reported that intensive follow-up 

consisting of CEA testing every 3–6 months and CT every 3–12 

months significantly reduced mortality. According to another 

meta-analysis done by Rosen et al.,132 the intensive follow-up 

group showed a higher cumulative 5-year survival rate than 

the control group (72.1% vs. 63.7%).

Many studies have supported the prognostic value of preop-

erative CEA levels.133 Park et al.134 analyzed 2,230 CRC patients 

and found that CEA level was significantly associated with pa-

tient outcomes. According to 2 large-scale case studies, preop-

erative CEA level was significantly associated with prognosis 

in patients with CRC that metastasized to the liver.135,136

2) Neutrophil-to-lymphocyte ratio

Lymphopenia is associated with impaired cell-mediated im-

munity, while neutrophilia is associated with systemic inflam-

mation.137 The neutrophil-to-lymphocyte ratio (NLR) was first 

studied as a marker for immune responses to various stressful 

conditions.138 Other studies found potential for NLR as a prog-

nostic marker for pancreatic cancer,139 gastric cancer,140 and 

hepatocellular carcinoma.141 However, few systemic reviews 

and meta-analyses have examined the prognostic role of NLR 

in CRC. Li et al.142 reported that patients with elevated NLR 

was significantly associated with shorter OS and PFS after 

treatment. Also, elevated NLR was significantly associated 

with elevated CEA level. Tsai et al.143 reported similar results 

after analyzing 15 studies including 7,741 CRC patients. CRC 

patients with a NLR < 5 before treatment were more likely to 

have 5-year OS and DFS. Tang et al.144 reviewed and analyzed 

a total of 1,685 CRC patients from 8 studies and reported that 

elevated pretreatment NLR was significantly related to poor 

OS and RFS in patients with liver metastasis. 

3) Concentration of cfDNA

A higher cfDNA concentration is reportedly related to signifi-

cantly shorter OS in CRC patients. Furthermore, CRC patients 

with higher cfDNA levels showed a higher risk of recurrence 

and shorter OS.44,145 Similarly, Wang et al.146 observed APC, KR­

AS, and p53 mutations in the serum and found that patients 

with detectable cfDNA showed significantly higher rates of 

postoperative metastasis/recurrence than those without de-

tectable cfDNA. Another study reported that patients with the 

KRAS mutation in the plasma and tissue showed shorter OS, 

indicating that the KRAS mutation in the plasma could be a 

prognostic marker for a poor outcome.147 

PREDICTIVE BIOMARKERS (Table 3)

1. Tissue Biomarkers
1) KRAS and NRAS

It has been reported that more than 50% of CRC cases show 

KRAS, NRAS, and BRAF mutations.148 The KRAS proto-onco-

gene encodes a GTPase protein (KRAS) that plays an essential 

role in many molecular pathways, including the EGFR path-
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way.149 Only wild-type RAS tumors reportedly showed the clin-

ical benefit of anti-EGFR antibody therapy such as cetuximab 

and panitumumab. As confirmed by both retrospective and 

prospective trials, KRAS mutations can be used as a negative 

predictive factor of a response to EGFR inhibitors.150-153 In 2017, 

ASCO reviewed 74,546 patients in 311 primary studies that 

compared treatment outcomes of patients with activated RAS 

mutation to those of the non-mutated type and recommend-

ed RAS mutational testing in all patients being considered for 

anti-EGFR therapy.154 

2) BRAF

A meta-analysis performed by Rowland et al.155 to evaluate the 

effect of BRAF mutation on anti-EGFR antibody therapy re-

vealed that there was insufficient evidence that BRAF could 

be used as a predictive marker for anti-EGFR antibody thera-

py success. Although the hazard ratio for OS and PFS with an-

ti-EGFR antibody therapy was higher in RAS wild-type/BRAF-

mutated tumors than in RAS wild-type/BRAF wild-type tumors 

(OS: 0.97; 95% CI, 0.67–1.41 vs. 0.81; 95% CI, 0.70–0.95 and PFS: 

0.89; 95% CI, 0.61–1.21 vs. 0.62; 95% CI, 0.50–0.77, respective-

ly); the results were not statistically significant (P = 0.43 and 

P = 0.07, respectively). 

3) PIK3CA

PIK3CA encodes the p110α catalytic subunit of the class IA 

phosphatidylinositol 3-kinases (PI3Ks), which play a major role 

in the RAS-mediated pathway that leads to proliferation, trans-

formation, and tumor progression.156 PIK3CA mutation occurs 

10% to 18% of CRC patients, primarily in exons 9 and 20.150

Many studies have reported that PIK3CA mutation might 

help predict a lack of benefit from anti-EGFR therapy in colon 

cancer, but the results were inconclusive.157,158 Huang et al.159 

conducted a meta-analysis of 11 studies with 864 KRAS-wild-

type metastatic CRC patients treated with anti-EGFR mono-

clonal antibodies. According to the study findings, patients 

with PIK3CA mutation showed a reduced response rate and 

poor PFS and OS in KRAS wild-type metastatic CRC patients. 

In particular, the PIK3CA mutation in exon 20 was significantly 

associated with a lack of response. On the other hand, Karape-

tis et al.160 reported that PIK3CA mutation status cannot be 

used as a predictive marker for a benefit from anti-EGFR mono-

clonal antibodies. Their results showed that PIK3CA mutation 

was not associated with lower OS or PFS from cetuximab thera-

py in KRAS wild-type CRC patients. Many studies have report-

ed the protective effect of aspirin in CRC.161,162 A recent study 

reported that PIK3CA mutation could be a predictive marker 

for adjuvant aspirin therapy in CRC patients. Liao et al.163 stud-

ied 964 patients with CRC and found out that PIK3CA-mutat-

ed CRC patients showed longer cancer-specific survival and 

OS rates compared to PIK3CA wild-type CRC patients. 

2. Blood Biomarkers
1) Cell-free DNA

Studies have found that the cfDNA concentration decreased 

after primary resection, but upon CRC relapse, cfDNA levels 

dramatically increased.45,145 Another study found that when 

circulating tumor DNA was detected after CRC surgery, it gen-

erally relapsed within 1 year.164 These results indicate that post-

operative cfDNA measurement could predict and help detect 

Table 3. Summary of Predictive Biomarkers

Biomarker Explanation

Tissue biomarker

   KRAS, NRAS KRAS proto-oncogene encodes a GTPase protein (KRAS) that plays an essential role in many molecular pathways including 
the EGFR pathway.149 Only wild-type RAS tumors showed the clinical benefit of anti-EGFR antibody therapy. KRAS mutations 
can be used as a negative predictive factor of a response to EGFR inhibitors.150-153

   BRAF It has been reported that there is insufficient evidence that BRAF mutation could be used as a predictive marker for the 
benefit of anti-EGFR antibody therapy.155

   PIK3CA Results are contradictory about whether PIK3CA mutation is associated with poor PFS and OS in KRAS wild-type CRC 
patients.159,160

Blood biomarker

   cfDNA The cfDNA concentration decreased after primary resection, but when the CRC relapsed, cfDNA levels dramatically 
increased.45,145 Similar results were found in rectal cancer patients who underwent chemoradiotherapy: The cfDNA 
concentration decreased in responders but increased in nonresponders.165

EGFR, epidermal growth factor receptor; PFS, progression-free survival; OS, overall survival; CRC, colorectal cancer; cfDNA, cell-free DNA.
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recurrence earlier. Zitt et al.165 evaluated the cfDNA concentra-

tion before and after chemoradiotherapy for rectal cancer. The 

authors found that cfDNA concentration decreased in respond-

ers, whereas it increased in non-responders. Agostini et al.166 

reported that post-chemoradiotherapy levels of the cfDNA in-

tegrity index was significantly lower in rectal cancer patients 

who responded to the therapy. Similar results were observed 

in other cancer studies. Patients who responded to the therapy 

showed decreased cfDNA, whereas those who did not respond 

to the therapy showed no change or increase in cfDNA.167 

CONCLUSIONS

CRC is a common malignancy that contributes significantly to 

cancer mortality rates. Survival outcomes of CRC vary between 

patients because of the complexity of colorectal carcinogene-

sis. Therefore, it would be beneficial to identify reliable and 

practical molecular biomarkers that help in the diagnostic and 

therapeutic process of CRC. Recent research has been target-

ed to identify sensitive and specific biomarkers for the diagno-

sis and treatment outcomes of CRC. Here we provided an over-

view of the newer diagnostic, prognostic, and predictive bio-

markers of CRC. Future studies are required to develop accu-

rate diagnostic, prognostic, and predictive CRC biomarkers 

that could be more clinically applicable and offer greater pa-

tient acceptability than conventional biomarkers.
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